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Abstract 

Background 

While the C. elegans genome is extensively annotated, relatively little information is 

available for other Caenorhabditis species. The nematode genome annotation 

assessment project (nGASP) was launched to objectively assess the accuracy of 

protein-coding gene prediction software in C. elegans, and to apply this knowledge to 

the annotation of the genomes of four additional Caenorhabditis species and other 

nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 

prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to 

reference gene sets consisting of confirmed or manually curated gene models from 

WormBase. 

Results 

The most accurate gene-finders were ‘combiner’ algorithms, which made use of 

transcript- and protein-alignments and multi-genome alignments, as well as gene 

predictions from other gene-finders. Gene-finders that used alignments of ESTs, 

mRNAs and proteins came in second place. There was a tie for third place between 

gene-finders that used multi-genome alignments and ab initio gene-finders. The 

median gene level sensitivity of combiners was 78% and their specificity was 42%, 

which is nearly the same accuracy as reported for combiners in the human genome. C. 

elegans genes with exons of unusual hexamer content, as well as those with many 

exons, short exons, long introns, a weak translation start signal, weak splice sites, or 

poorly conserved orthologs were the most challenging for gene-finders. 
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Conclusions 

This experiment establishes a baseline of gene prediction accuracy in Caenorhabditis 

genomes, and has guided the choice of gene-finders for the annotation of newly 

sequenced genomes of Caenorhabditis and other nematode species. We have created 

new gene sets for C. briggsae, C. remanei, C. brenneri, C. japonica, and Brugia 

malayi using some of the best-performing gene-finders.  

 

Background 

The promise of comparative genomics among the nematodes has motivated 

sequencing in Caenorhabditis elegans, C. briggsae, C. brenneri, C. remanei, and C. 

japonica [1-3]. While the C. elegans genome has been extensively annotated, 

relatively little information is available for the other Caenorhabditis genomes [4]. In 

addition, the genome of the distantly related nematode Brugia malayi was recently 

published [5], and those of many other nematodes are currently being sequenced such 

as Pristionchus, Haemonchus, Meloidogyne, and Trichinella. An essential step in the 

analysis of these genomes will be to identify and annotate their protein-coding genes, 

but it is not known which gene prediction systems perform best on nematode 

genomes. To address this issue, the nematode genome annotation assessment project 

(nGASP) was launched to assess the accuracy of protein-coding gene prediction 

software in C. elegans, and then to apply this knowledge to annotating other 

Caenorhabditis genomes.  

The nGASP project parallels recent computational prediction initiatives 

including CASP for protein structure prediction [6], GASP for Drosophila gene 

prediction [7], and EGASP for human gene prediction [8]. Scientists working in the 
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field of computational gene prediction were invited to participate in nGASP. 

Participants were provided with training and test sets, each comprising ten non-

overlapping 1-Mb genomic sequence regions, representing ~10% of the C. elegans 

genome. We also provided auxiliary data to the participants to use for training their 

gene-finders, and producing the final predictions on the test regions. The auxiliary 

data included multi-genome alignments between C. elegans, C. briggsae and C. 

remanei, and alignments of ESTs, mRNAs and proteins to the C. elegans genome. 

nGASP was conducted in two phases. The first phase of the competition was 

open to all gene prediction programs and was divided into three categories: category 1 

predictions were based on genomic sequence alone (ab initio gene-finders); category 

2 used nucleotide level multi-genome alignments; and category 3 predictions used 

alignments of expressed sequences such as proteins, ESTs, and assembled mRNAs. 

After the first phase of the competition was complete, we posted the output of each of 

the predictors to the nGASP web site (http://dev.wormbase.org/ngasp). We then 

began phase two of the competition, which was open to ‘combiners’ (category 4), 

defined as gene prediction systems that use gene models created by other annotation 

software, and any of the data used as input for the phase one gene-finders. To assess 

the accuracy of the submitted predicted gene sets, we quantified their sensitivity and 

specificity in predicting coding regions by using the metrics from GASP [7] and 

EGASP [8]. Here, we describe the performance of the most accurate gene-finders in 

C. elegans, identify some common features of C. elegans genes that the majority of 

gene-finders find hard to predict correctly, and discuss the choice of gene predictors 

for the annotation of the newly sequenced genomes of other nematode species. 
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Results and Discussion  

Submitted Gene Sets 

Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets 

for 10 Mb of the C. elegans genome (Table 1). Several groups submitted predicted 

gene sets for more than one category, or more than one entry per category generated 

by running their programs under different parameter sets. The submitted gene sets, 

and the details of the parameters used to make them, are available on the nGASP ftp 

site ftp://ftp.wormbase.org/pub/wormbase/nGASP/.  

 

Procedure for Evaluation of Gene-Finding Accuracy 

The 10-Mb of test DNA sequence consisted of ten non-overlapping 1-Mb genomic 

regions of the C. elegans genome (Table 2). The gene predictions submitted to 

nGASP were evaluated using two reference gene sets drawn from WormBase (release 

WS160), an intensively curated gene prediction set: (i) ref1, a 'sensitivity/accuracy' 

set consisting of genes from the test regions that were supported by full-length 

cDNAs, and (ii) ref2, a 'full set' that contained all curated genes from the test regions 

(see Methods). We assessed sensitivity (Sn) using the ref1 reference and specificity 

(Sp) using the ref2 reference. nGASP differed from the Drosophila GASP [7] and 

human EGASP [8], in that curated gene structures for C. elegans were already 

publicly available, but participants were requested to not consult WormBase, 

GenBank or other databases for the curated gene models in the test regions.  

For each submitted gene set, we assessed its ability to accurately predict 

protein coding regions at the base, exon, isoform and gene levels, following the 

definitions of EGASP [8]. The least stringent metrics were base level sensitivity and 

specificity, which measure whether a gene predictor is able to correctly classify a base 
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as coding. By ‘exon’, we mean the protein-coding part of an exon (also known as the 

CDS, or coding sequence). Exon level metrics measure the ability of a gene prediction 

system to identify the exact left and right borders of the protein-coding regions of 

exons in the reference sets. Isoform level accuracy is the most stringent test. One C. 

elegans gene can produce several alternative spliced transcripts. For the purposes of 

nGASP we considered only the protein-coding portion of a transcriptional isoform, 

and scored a correctly predicted isoform if the protein-coding portions of all its exons 

were predicted accurately and no extra full or partially protein-coding exons were 

predicted. The gene level assessment of accuracy was intermediate in stringency 

between the exon and isoform levels. To be scored correct at the gene level, a gene 

predictor had to call at least one of the gene's isoforms correctly. 

 

Results from Evaluation of Gene-Finding Accuracy 

The best submitted gene prediction sets had base level sensitivity in excess of 99% 

and specificity of more than 93% (Table 3; Figure 1). This means that the best gene 

predictors are able to identify almost all the protein-coding bases in the C. elegans 

genome and only occasionally predict that a non-coding base is coding. At the exon 

level, the best submitted gene sets had sensitivities of more than 91% and specificities 

of more then 83%. Although most gene-finders identify most true coding bases 

correctly, they often do misidentify the boundaries of protein-coding exons. At the 

base and exon levels, specificities were lower than sensitivities. This may reflect a 

number of inaccurate gene models in the ref2 gene set, which included gene models 

not fully supported by transcript evidence, and perhaps also reflects exons that are 

missing from the ref2 gene set.  
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The ultimate goal of a gene predictor is to predict entire genes correctly, 

including every alternative isoform. However, in practice gene-finders do not predict 

alternative isoforms of a gene very well. At the isoform level, the best gene sets had 

sensitivities of about 66% and specificities of about 56%. That is, the best gene-

finders each missed about 34% of true C. elegans isoforms, indicating that gene-

finders still need improvements in predicting alternative splice forms. At the gene 

level, the best submitted gene sets had sensitivities and specificities in excess of 80% 

and 58% respectively. That is, for 80% of genes in the ref1 reference set, the best 

gene predictors called at least one splicing isoform correctly across the entire length 

of its protein-coding region.  

 The isoform level is the most stringent level of assessment. However, given 

the low success of most gene-finders for predicting alternative splicing, gene level 

accuracy is generally considered more important for the purpose of annotating a 

newly sequenced genome such as that of Caenorhabditis remanei. That is, it is 

considered more important to predict at least one isoform of each gene correctly, 

rather than to predict all isoforms of one gene correctly and no isoforms of a second 

gene correctly. At the gene level, the most accurate gene-finders were combiners 

(Figure 1). Gene predictors that use alignments of ESTs, mRNAs and proteins came 

in second place. Combiners had higher sensitivity than algorithms that used expressed 

sequence alignments at the gene level (medians: combiners 78%, expressed sequence-

based 68%, P=0.04). However, in terms of specificity, there was no significant 

difference in gene level accuracy between combiners and gene predictors that used 

transcript and protein alignments (medians: combiners 42%, expressed sequence-

based 39%, P=0.1). Thus, by using diverse data such as expressed sequence 

alignments, multi-genome alignments and gene sets from different gene-finders, 
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combiners improved the sensitivity of their predictions above those based on 

expressed sequence alignments alone. This agrees with EGASP [8], which reported 

that combiners had higher gene level sensitivities for human genes compared to gene-

finders that used expressed sequence alignments alone (medians: combiners 70%, 

expressed sequence-based 64%) [8]. 

At the gene level, prediction algorithms that used expressed sequence 

alignments had higher sensitivity than ab initio gene predictors (medians: expressed 

sequence-based 68%, ab initio 54%, P=0.05), as well as higher specificity (expressed 

sequence-based 39%, ab initio 32%, P=0.01). This demonstrates that use of expressed 

sequence data leads to considerable improvements in the accuracy of gene-finders for 

C. elegans. This mirrors the findings of EGASP, which also reported higher gene-

sensitivities for gene-finders that used transcript or protein alignments compared to ab 

initio gene-finders (medians: expressed sequence-based 63%, ab initio 18%), as well 

as higher gene-specificities (expressed sequence-based 55%, ab initio 8%) [8].  

There was a tie for third place between gene prediction algorithms that used 

multi-genome alignments and ab initio gene-finders. The addition of multi-genome 

alignments to C. briggsae and C. remanei gave no statistically significant 

improvement in accuracy over ab initio predictions. This was surprising, as the 

EGASP project reported that gene-finders that used multi-genome alignments were 

more accurate than ab initio gene-finders for predicting human genes, in terms of both 

gene level sensitivities (medians: ab initio 18%, multi-genome 26%) and specificities 

(ab initio 8%, multi-genome 19%). This may reflect the relatively high gene level 

accuracy of ab initio gene-finders in C. elegans (medians: gene Sn 54%, Sp 32%), 

compared to human (Sn 18%, Sp 8%) [8], probably due to the compact nature of the 

C. elegans genome. In addition, it is possible that the evolutionary distances 
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separating C. elegans, C. briggsae and C. remanei are less suited for inference of 

protein coding genes from multi-genome alignments than the corresponding set of 

vertebrate genomes used in the EGASP study. Furthermore, a difference in the way 

that the reference sets were defined for nGASP and EGASP could contribute to the 

observed difference in accuracy. For example, because nGASP used different 

reference sets to estimate sensitivity and specificity, this might lead to different results 

compared to EGASP, which relied on a single set of reference genes to calculate both 

sensitivity and specificity. 

In both nGASP and EGASP, the best gene-finders were combiners. However, 

in nGASP the median gene level sensitivity of combiners was 78% and specificity 

was 42%, while in EGASP the median gene level sensitivity of combiners was 70% 

and specificity was 52% [8]. In C. elegans, about 8% more of the true genes are 

predicted correctly, but 10% fewer of the gene predictions made are structurally 

correct. The lower specificity in C. elegans suggests that there are more real isoforms 

and/or real genes missing from the C. elegans curated gene set, compared to the 

human curated gene set. This could be due to the far smaller amount of transcript data 

available for C. elegans and/or more conservative manual curation of weakly 

supported isoforms or genes by WormBase. Using the average of the sensitivity and 

specificity as an overall metric of accuracy, the C. elegans combiner gene sets were 

slightly less accurate (median 59%) than the human combiner gene sets (median 

61%). 

 

Factors Affecting Gene-Finding Accuracy 

To understand which factors affect the accuracy of gene-finders in C. elegans, we 

identified features of genes that were not predicted correctly by the ab initio gene-
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finders, gene-finders that used multi-genome alignments, and gene-finders that used 

expressed sequence alignments. The percentage of gene sets in which a true gene was 

predicted correctly (using the ref1 reference gene set) was found to be correlated with 

nine features of genes (Figure 2): 

(i) the lowest ‘hexamer score’ of any of the exons in the gene (Spearman’s 

ρ=0.38, P<10-16), using the score based on the frequency of 6-bp words from 

Genefeatures in the AceDB software [9], 

(ii) the number of exons in the gene (ρ=-0.36, P<10-16), 

(iii) the length of the shortest exon in the gene (ρ=0.30, P=10-11), 

(iv) the length of the longest intron in the gene (ρ=-0.29, P=10-9), 

(v) the strength of the translation start signal (ρ=0.28, P=10-9), as measured by 

Genefeatures, 

(vi) the lowest score of any of splice sites in the gene (ρ=0.25, P=10-7), as 

measured by Genefeatures, 

(vii) the percent identity with the C. briggsae ortholog at the amino acid level 

(ρ=0.22, P=10-5), based on an alignment from the TreeFam database of gene 

families [10], 

(viii) the maximum distance to a neighbouring gene (ρ=-0.16, P=0.0003), and 

(ix) the number of isoforms in the gene (ρ=-0.11, P=0.02). 

That is, the C. elegans genes that are hardest for gene-finders to predict correctly are 

those with an exon of unusual hexamer content, lots of exons, a very short exon, a 

very long intron, a weak translation start signal, a weak splice site, a poorly conserved 

ortholog, far from one of its neighbouring genes, or with many isoforms. We suggest 

that developers of gene-finding programs should concentrate on improving accuracy 

on these types of genes. The correlation with these features tended to be stronger for 
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ab initio gene-finders than expressed sequence-based gene-finders (Figure 2). For 

example, the correlation with the lowest hexamer score for the exons in a gene was 

higher for ab initio gene-finders than for expressed sequence-based gene-finders 

(ρ=0.42 and 0.22, Z-test: P=0.0005). We observed weak or nonexistent correlations 

with other features that we examined, such as the length of the longest exon in a gene 

(P>0.05), length of the shortest intron (P>0.05), whether the adjacent genes are on the 

same strand (P>0.05), existence of embedded genes with a gene’s introns (ρ=-0.11, 

P=0.01), whether a gene is member of an operon (P>0.05), whether neighbouring 

genes are paralogs (inferred from TreeFam [10]; P>0.05), and whether the gene 

overlaps a simple repeat or transposable element (P>0.05).  

 There were 19 genes that were missed in all of the category 1, 2 and 3 gene 

sets, which must be the most difficult-to-predict: C06G3.7 (trxr-1), C08G5.5, 

C33H5.14 (ntp-1), C55F2.1, D1009.1, F18E9.3, F57F5.2 (gcy-33), R04E5.7, 

R04E5.8, T07D3.4, T07F12.4, Y105E8A.7 (eat-18), Y43H11AL.1, Y43G8AL.7, 

Y54E5B.1 (smp-1), Y55F3BR.6, ZC455.6 , ZC477.1 (ssq-3), and ZC8.4 (lfi-1). Several 

of these genes have unusually long introns of >1400 bp (Y43H11AL.1, Y43G8AL.7, 

Y54E5B.1), unusually short exons of <40 bp (D1009.1, Y105E8A.7, ZC8.4), poorly 

conserved orthologs (C08G5.5, R04E5.7, R04E5.8), lots of exons (F18E9.3, 

T07D3.4), or are very far from one of their neighbours (T07F12.4). 

 

New Gene Sets for C. remanei, C. brenneri, C. japonica and Brugia malayi 

To judge which gene-finders in each category performed best, we used the average of 

the gene level sensitivity and specificity for a gene set as a metric of overall accuracy. 

In collaboration with several of the nGASP contributors, we are assembling new gene 

sets for C. elegans, C. briggsae, C. brenneri, C. remanei, C. japonica and Brugia 
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malayi using the three best performing of the gene-finders that used transcript/protein 

alignments: MGENE (Schweikert et al, submitted), AUGUSTUS [11] and FGENESH [12]. 

The best performing combiner, JIGSAW [13], is being used to combine the MGENE, 

AUGUSTUS and FGENESH predictions into a single nGASP gene set for each species 

that will form the basis of curated gene sets for the new genomes and will be used to 

improve curated gene models in C. elegans. All gene sets will be available from 

ftp://ftp.wormbase.org/pub/wormbase/nGASP_gene_predictions/predictions/ and will 

also be displayed in the genome browsers for these species at 

http://www.wormbase.org.  

 

Conclusions  

This experiment establishes a baseline of gene prediction accuracy in Caenorhabditis 

genomes, and is guiding the choice of gene prediction systems for the annotation of 

newly sequenced genomes for Caenorhabditis and other nematode species. At 

present, combiners are more accurate than other classes of gene prediction algorithm 

in C. elegans. However, the accuracy of the combiners would presumably benefit by 

increasing the accuracy of the component gene prediction sets that they are given. We 

have also identified features of C. elegans genes that are difficult to predict for ab 

initio gene-finders and gene-finders that use transcript-, protein- and multi-genome 

alignments, and hope that leaders in the gene prediction field will rise to the challenge 

of improving accuracy on such genes. 
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Methods  

Data Provided to the nGASP Participants 

Genomic DNA Sequence: To select the nGASP test and training regions, we divided 

the WormBase WS160 C. elegans genome sequence into 102 non-overlapping 

regions of 1 Mb, and discarded regions of less than 1 Mb from the high-coordinate 

ends of the six chromosomes, leaving a set of 96 1 Mb regions. Representative 

training and test regions were selected from these regions based on gene density and 

conservation, following the strategy used to select the human ENCODE regions [8]. 

We measured gene density in each region by counting the number of curated genes, 

and assessed conservation with C. briggsae by using the number of bases covered by 

strong WABA [14] matches to C. briggsae. Regions were classified as having high or 

low gene density or conservation if their values lay in the top or bottom 33% 

percentiles respectively. The test and training sets each consisted of ten 1 Mb regions 

that were randomly chosen from the sets of regions with particular combinations of 

high/low gene density and high/low conservation (for example, we randomly chose 

two of the high conservation, low gene density autosomal regions; Table 2).  

Auxiliary Training Data: We requested that gene-finders that had previously been 

trained using a large fraction of C. elegans confirmed genes or other data outside the 

supplied training sets be retrained solely on the training set provided by the nGASP 

project, namely: 

(i) the coordinates of repeats found by RepeatMasker (A. Smit, unpublished, 

http://www.repeatmasker.org) in the training regions. 
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(ii) the coordinates of coding exons, introns and UTRs in 584 confirmed isoforms 

(CDSs) of 432 genes in the training regions. An isoform was considered as confirmed 

if it was supported from start to end by mRNA, EST or OST transcript data. 

(iii) the coordinates of coding exons, introns, and UTRs in 1583 ‘unconfirmed’ 

isoforms of 1461 genes in the training regions. These genes lacked any confirmed 

isoforms.  

(iv) the DNA sequence for the ‘cb1’ assembly of the C. briggsae genome. 

(v) the DNA sequence for the ‘pcap2’ assembly of the C. remanei genome. 

(vi) a multi-genome alignment between C. elegans, C. briggsae and C. remanei for 

the C. elegans training regions, made using MLAGAN version 1.21 [15]. 

(vii) the amino acid sequences of 42,496 proteins that have BLAST [16] matches to the 

test or training regions, excluding matches to proteins encoded by genes in the test 

regions. The BLAST matches were made by running BLAST with an E-value cut-off of 

0.1 against proteins from C. elegans (wormpep160), C. briggsae (brigpep160), 

Drosophila melanogaster (FlyBase [17]), Saccharomyces cerevisiae (SGD [18]), 

UniProt [19], and human (Ensembl [20] and RefSeq [21]).  

(viii) the nucleotide sequences of 20,141 C. elegans ESTs/cDNAs that have BLAT 

matches to the test or training regions.  

(ix) the coordinates of the BLAST and BLAT matches in (vii) and (viii) in the test and 

training regions.  

Participants were allowed to use different data for training, and for making 

predictions in the test regions, according to the nGASP category under which they 

were submitting a gene prediction set. The repeat sequences (i) and genes in the 

training regions (ii and iii) could be used by all participants. Participants who 

submitted ab initio (category 1) gene sets were not allowed to use any additional data 
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for training or making gene sets. For gene-finders that used multi-genome alignments 

(category 2), participants could use the C. briggsae and C. remanei assemblies (iv and 

v) and the MLAGAN multi-genome alignment (vi). They also were allowed to generate 

a different multi-genome alignment using the tool(s) of their choice. For gene 

predictors that used expressed sequence alignments (category 3), participants could 

use the protein and transcript matches (vii, viii, ix), or they could choose a different 

alignment algorithm to realign the protein and transcript sequences contained in these 

sets. 

For combiners (category 4), participants could use any of the auxiliary data 

allowed for categories 1-3, as well as the gene predictions submitted for categories 1 

through 3 during nGASP phase one. Category 4 participants were also supplied with 

the coordinates of coding exons, introns, and UTRs in 386 confirmed isoforms of 242 

genes in the 5' halves of each of the phase one test regions, which could be used as an 

additional training set. Because of this, combiners were evaluated using ref1 and ref2 

gene sets drawn from the 3’ halves of each phase one test region. 

 

Submission of Gene Sets 

The submitted gene prediction files were required to be in GFF3 format (L. Stein, 

unpublished; http://song.sourceforge.net/gff3.shtml), an extension of GFF (Gene 

Feature Format; R. Durbin and D. Haussler; http://www.sanger.ac.uk/Software/GFF). 

The GFF3 files were required to contain lines for gene, mRNA, CDS, and 5' and 3' 

UTR features. The format of gene prediction files submitted to nGASP was validated 

using a GFF3 format validator (P. Canaran, unpublished; 

http://dev.wormbase.org/db/validate_gff3/validate_gff3_online). 
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Resources for Assessing Predictions: the Reference Gene Sets 

Predictions were compared to two different reference gene sets based on data in 

WormBase WS160 [4]: (i) all confirmed isoforms in the test regions (‘ref1’), and (ii) 

all isoforms in all genes in the test regions (‘ref2’). Ref1 consisted of 605 isoforms 

from 493 different genes, and ref2 consisted of 2250 isoforms from 1956 different 

genes. For phase two, we evaluated combiners using the 3' halves of each test region. 

The phase two ref1 and ref2 reference sets contained 313 isoforms from 249 different 

genes, and 1130 isoforms from 966 different genes, respectively. 

We used ref1 to assess sensitivity and ref2 to assess specificity. This is 

because the true-positive and false-negative counts calculated by comparison to ref1 

are more reliable than those calculated using ref2, as the gene models in ref1 are of 

higher quality. In contrast, the false-positive counts calculated by comparison to ref2 

are more reliable, because a higher fraction of true genes are represented by gene 

models in ref2. 

 

Evaluation of Accuracy of Submitted Gene Sets 

Two sets of evaluation software were written for nGASP. The first (P. Flicek, 

unpublished) was based on the earlier EGASP [8] evaluation software, but was 

extended to handle the GFF3 format for nGASP. The second software (A. Coghlan, 

unpublished) was written independently but calculated the same accuracy statistics. 

 

Data Availability and Visualisation 

The nGASP test and training data, the submitted gene predictions and the command-

line options and parameters used to generate them, and the ref1 and ref2 reference 
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gene sets are available for download on the nGASP wiki 

http://www.wormbase.org/wiki/index.php/nGASP and on the nGASP ftp site 

ftp://ftp.wormbase.org/pub/wormbase/nGASP. 

 The submitted gene predictions and the reference gene sets can be viewed in a 

genome browser based on GBrowse [22] at http://dev.wormbase.org/ngasp/. Each 

gene set is displayed in a different colour (Figure 3). 
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Figures 

 

Figure 1 - Accuracy of the Submitted Gene Sets. 

Plots of the specificity against sensitivity of the submitted gene sets, at the base level 

(A), exon level (B), isoform level (C) and gene level (D). The submitted gene sets are 

coloured by nGASP category, with ab initio (category 1) gene sets in red, gene-

finders that used multi-genome alignments (category 2) in black, gene-finders that 

used transcript/protein alignments (category 3) in blue, and combiners (category 4) in 

green. The gene sets are labelled as follows: AU: AUGUSTUS, MG: MGENE, CR: 

CRAIG, AG: Agene, EU: EUGENE, FPC: Fgenesh++C, FP: Fgenesh++, FG: Fgenesh, 

GE: GeneID, GM: GeneMark.hmm, GX: GENOMIX, GS: GESECA, GN: GLEAN, GL: 
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GlimmerHMM, GR: Gramene, JW: JIGSAW, MK: MAKER, MG: MGENE, NS: N-SCAN, 

SG: SGP2, SN: SNAP, EX: ExonHunter, EV: Evigan.  

 

 

 
 

Figure 2 – Factors Affecting Gene-finding Accuracy. 

Plots of gene-level sensitivity against features of genes that are correlated with gene-

finding accuracy: (A) the lowest hexamer score of any of the exons in the gene, (B) 

the number of exons in the gene, (C) the length of the shortest exon in the gene, (D) 

the length of the longest intron in the gene, (E) the strength of the translation start 

signal, (F) the lowest score of any of splice sites in the gene, (G) the percent identity 

with the C. briggsae ortholog at the amino acid level, (H) the maximum distance to a 

neighbouring gene, and (I) the number of isoforms in the gene. In each plot, the 
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submitted gene sets are coloured by nGASP category, with ab initio (category 1) gene 

sets in red, gene-finders that used multi-genome alignments (category 2) in black, and 

gene-finders that used transcript/protein alignments (category 3) in blue. The solid 

lines show the median sensitivities of the gene sets in a category, while the dashed 

lines show the maximum sensitivity of the gene sets in a category. 

 

 

 

Figure 3 - A Screenshot from the nGASP Genome Browser.  

This shows part of an nGASP test region on chromosome I, with the curated 

WormBase gene models and the ab initio (category 1) gene sets submitted to nGASP 

for that region. 
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Tables 

 

Table 1 - Participating Groups and Submitted Gene Sets.  

The research groups that participated in nGASP, the names of the software used to 

produce gene prediction sets, and the number of gene sets submitted in each of the 

nGASP categories by a research group, are given. Here ‘cat3:2’ means that 2 gene 

sets in category 3 were submitted. In some cases a group submitted two gene sets 

produced by using different parameters of their software to the same nGASP 

category. 

Participating group Program name Number of gene sets submitted 
in each category 

Blasiar et al, Saint Louis, USA GESECA (D. Blasiar, 
unpublished)  

cat4:1 

Borodovsky et al, Atlanta, USA GeneMark.hmm[23] cat1:1 
Brent et al, Saint Louis, USA N-SCAN [24] cat2:1 
Durbin et al, Cambridge, UK GENOMIX [25] cat4:2 
Guigó et al, Barcelona, Spain GeneID1 [26], SGP2 [27] GeneID: cat1:1, cat4:2;  

SGP2: cat2:1 
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Korf et al, Davis, USA SNAP [28] cat1:1 
Krogh et al, Copenhagen, 
Denmark 

Agene [29] cat1:1 

Liang et al, Cold Spring Harbor, 
USA 

Gramene (Liang et al, 
unpublished)  

cat3:2, cat4:1 

Pereira et al, Pennsylvania, USA Evigan (Q. Liu et al, manuscript 
in prep.), CRAIG [30] 

CRAIG: cat1:1;  
Evigan: cat4:1 

Rätsch et al, Tübingen, 
Germany 

MGENE (Schweikert et al, 
submitted) 

cat1:3, cat2:2, cat3:3 

Roos et al, Pennsylvania, USA GLEAN [31] cat4:1 
Salzberg et al, Maryland, USA JIGSAW [13], GlimmerHMM 

[13] 
GlimmerHMM: cat1:1; 
JIGSAW: cat4:2 

Schiex et al, Toulouse, France EUGENE [32] cat1:1, cat2:1, cat3:2, cat4:4 
Solovyev et al, University of 
London and Softberry Inc, New 
York, USA 

Fgenesh, Fgenesh++, 
Fgenesh++C [12] 

Fgenesh: cat1:1;  
Fgenesh++: cat3:1; 
Fgenesh++C: cat4:1 

Stanke et al, Santa Cruz, USA AUGUSTUS [11] cat1:2, cat3:1 
Vinar et al, New York, USA ExonHunter [33] cat1:1, cat3:2 
Yandell et al, Berkeley, USA MAKER [34] cat3:2 
1The GeneID gene set was submitted after the nGASP deadline. 

 

Table 2 - The nGASP Test and Training Genomic Regions. 

The ten 1-Mb regions of the C. elegans genome provided to the nGASP participants 

for training their gene-finders, and ten 1-Mb test regions in which they were asked to 

make gene predictions for the nGASP assessment. 

Type of 
nGASP region 

Criterion used for selecting region Coordinates in the C. 
elegans WS160 genome 

Training High conservation, high gene density, autosomal II: 2000001-3000000 
Training High conservation, high gene density, autosomal V: 9000001-10000000 
Training High conservation, low gene density, autosomal III: 1000001-2000000 
Training High conservation, low gene density, autosomal IV: 2000001-3000000 
Training Low conservation, high gene density, autosomal I: 12000001-13000000 
Training Low conservation, high gene density, autosomal V: 4000001-5000000 
Training Low conservation, low gene density, autosomal I: 2000001-3000000 
Training Low conservation, low gene density, autosomal II: 13000001-14000000 
Training High conservation, low gene density, X-chromosome X: 3000001-4000000 
Training High conservation, low gene density, X-chromosome X: 2000001-3000000 
Test High conservation, high gene density, autosomal IV: 7000001-8000000 
Test High conservation, high gene density, autosomal V: 12000001-13000000 
Test High conservation, low gene density, autosomal IV: 1-1000000 
Test High conservation, low gene density, autosomal I: 14000001-15000000 
Test Low conservation, high gene density, autosomal V: 16000001-17000000 
Test Low conservation, high gene density, autosomal II: 1-1000000 
Test Low conservation, low gene density, autosomal IV: 14000001-15000000 
Test Low conservation, low gene density, autosomal I: 1000001-2000000 
Test High conservation, low gene density, X-chromosome X: 4000001-5000000 
Test High conservation, low gene density, X-chromosome X: 8000001-9000000 
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Table 3 – Evaluation of Submitted Gene Sets. 

The accuracy of the submitted gene sets evaluated using the reference gene sets ref1 

and ref2. The sensitivity (Sn) results are given for reference set ref1, and the 

specificity (Sp) results are given for set ref2. The gene sets are divided according to 

nGASP category, where category 1 is ab initio gene-finders, 2 is gene-finders that 

used multi-genome alignments, 3 is gene-finders that used alignments of ESTs, 

mRNAS and proteins, and 4 is combiners.  

Gene set nGASP 

category 

Base 

Sn, 

ref1 

Base 

Sp, 

ref2 

Exon 

Sn, 

ref1 

Exon 

Sp, 

ref2 

Isoform 

Sn, ref1 

Isoform 

Sp, ref2 

Gene 

Sn, 

ref1 

Gene 

Sp, ref2 

Agene  1 93.79 83.41 68.87 61.09 9.75 13.12 11.97 14.08 

AUGUSTUS v1 1 97.02 89.02 86.12 72.55 50.08 28.65 61.05 38.41 

AUGUSTUS v2 1 96.82 89.30 84.77 74.33 49.26 31.92 60.45 32.74 

CRAIG 1 95.55 90.91 80.17 78.15 35.70 36.30 43.81 37.80 

EUGENE 1 93.98 89.48 80.28 73.00 49.09 28.82 60.24 30.17 

ExonHunter  1 95.36 86.03 72.63 62.53 15.54 18.58 19.07 19.18 

Fgenesh 1 98.21 87.11 86.37 73.55 47.11 34.59 57.81 35.43 

GeneID 1 93.89 88.24 77.04 68.63 36.20 22.84 44.42 25.08 

GeneMark.hmm  1 98.26 83.06 83.17 65.58 37.69 23.98 46.25 24.54 

GlimmerHMM 1 97.60 87.62 84.42 71.37 47.27 29.31 58.01 30.55 

MGENE v1 1 97.23 91.48 84.63 78.58 44.63 40.88 54.77 42.29 

MGENE v2 1 96.86 91.60 84.17 78.70 43.97 40.87 53.96 42.35 

MGENE v3 1 96.86 91.59 84.17 78.63 43.47 40.50 53.35 44.75 

SNAP 1 93.98 84.47 74.57 61.30 32.56 18.61 39.96 19.09 

EUGENE 2 96.23 87.48 82.75 72.82 50.25 30.19 61.66 31.36 

MGENE v1 2 97.70 90.91 85.81 78.35 51.57 41.18 63.29 42.52 
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MGENE v2 2 97.70 90.91 85.81 78.30 51.24 40.87 62.68 43.83 

N-SCAN 2 97.39 88.07 83.51 70.83 39.17 27.69 48.07 28.39 

SGP2 2 93.47 89.99 77.32 70.27 36.36 24.89 44.62 27.11 

AUGUSTUS v1 3 98.96 90.52 92.45 80.20 68.26 47.07 80.12 51.81 

EUGENE v1 3 97.27 85.30 88.49 72.22 55.70 33.70 68.36 34.15 

EUGENE v2 3 98.50 85.09 92.10 70.32 60.83 31.53 68.76 36.100 

ExonHunter v1 3 97.55 87.31 83.90 69.33 38.51 31.92 47.26 32.52 

ExonHunter v2 3 93.69 91.96 81.18 76.92 37.19 39.74 45.64 40.47 

Fgenesh++ 3 97.57 89.70 90.43 80.93 65.45 53.44 78.30 54.20 

Gramene v1 3 98.19 95.42 88.45 71.76 41.65 19.55 48.68 37.20 

Gramene v2 3 98.61 94.77 88.31 67.77 38.68 16.27 46.04 39.04 

MAKER v1 3 92.94 88.50 80.73 66.27 41.32 19.62 50.71 47.55 

MAKER v2 3 92.61 91.05 80.49 69.49 40.83 23.19 50.10 27.95 

MGENE v1 3 98.70 91.89 90.96 80.67 57.69 48.04 70.79 48.89 

MGENE v2 3 98.88 87.86 91.86 75.88 62.64 38.72 76.88 39.46 

MGENE v3 3 98.71 91.88 90.99 80.61 57.69 48.00 70.59 51.11 

EUGENE v1 4 98.53 85.60 90.50 75.07 60.38 39.29 75.90 39.51 

EUGENE v2 4 99.40 85.35 94.27 72.63 63.90 35.89 74.70 42.04 

EUGENE v3 4 98.57 85.60 90.57 74.18 63.26 36.91 79.52 37.36 

EUGENE v4 4 99.24 85.34 93.99 71.76 67.09 33.94 77.91 39.76 

Evigan 4 99.29 89.59 91.13 82.31 64.22 52.38 80.72 52.71 

Fgenesh++C 4 98.69 89.68 91.06 82.70 66.13 56.26 80.32 57.14 

GeneID v1 4 99.34 91.50 93.01 83.78 63.90 53.27 78.31 57.67 

GeneID v2 4 98.96 91.97 90.71 85.03 61.66 55.49 77.51 57.10 

GENOMIX v1 4 97.05 88.55 86.16 77.36 52.40 39.04 65.86 42.21 

GENOMIX v2 4 98.07 90.40 89.66 83.53 60.38 53.27 75.90 56.05 

GESECA 4 98.76 82.84 87.56 66.81 45.05 25.86 52.61 27.43 

GLEAN 4 98.92 87.28 88.33 75.37 51.44 36.95 64.66 37.62 

Gramene 4 97.52 80.89 82.67 48.71 22.36 6.09 27.31 30.32 
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JIGSAW v1 4 98.89 93.22 90.50 87.36 63.58 60.23 79.92 61.00 

JIGSAW v2 4 98.92 91.66 89.94 83.04 61.98 51.07 77.91 51.95 
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